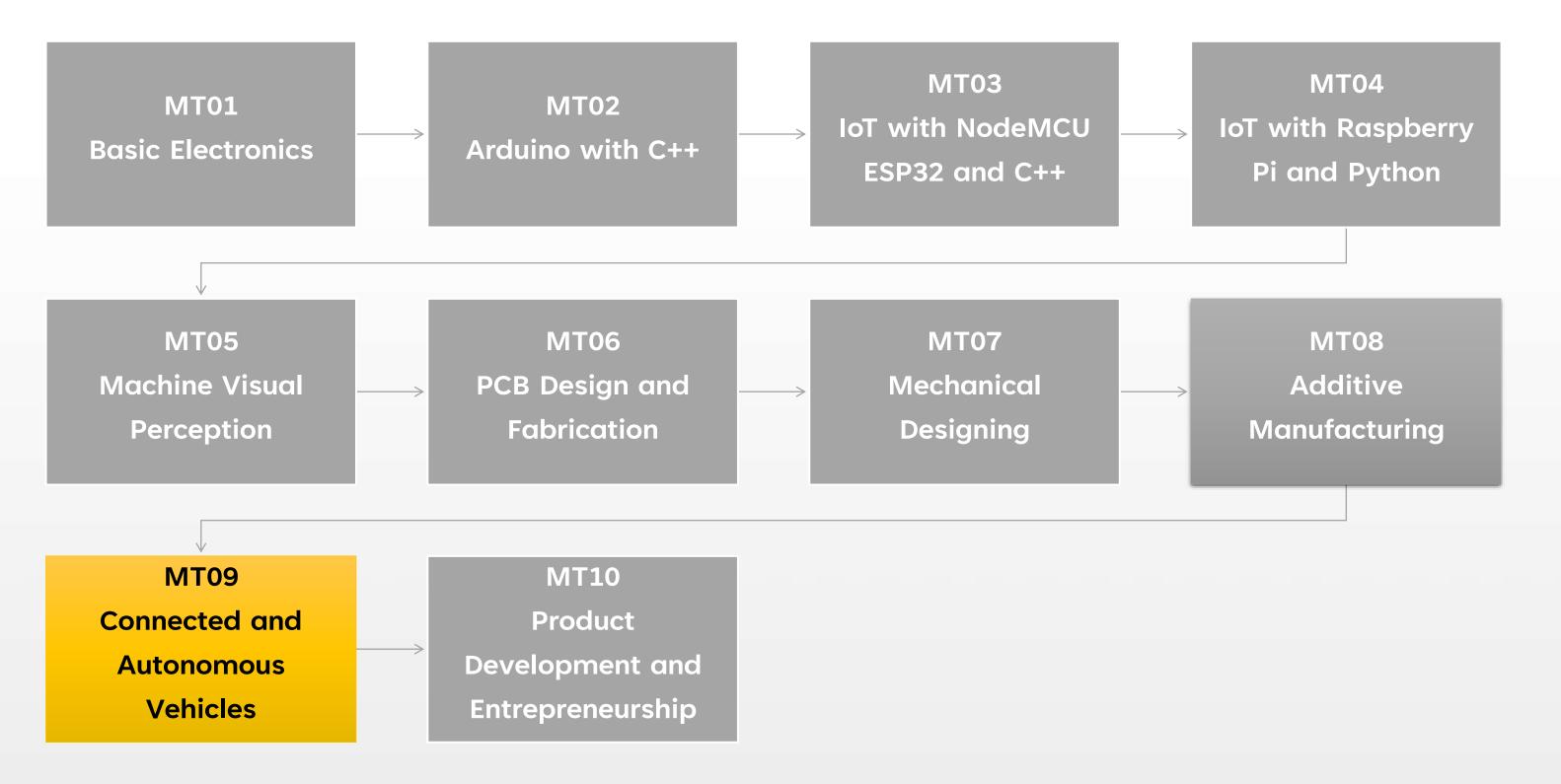


Connected and Autonomous Vehicles

Connected and Autonomous Vehicles

Autonomous Vehicles in ROS


5/17/2024

2 Months

BOLDBus.io

Learning Pathway: Robotics

Copyright © 2024 AlphaBOLD | All Rights Reserved

MT

Course Unit Details

Copyright © 2024 AlphaBOLD | All Rights Reserved

Overview

Welcome to the "Autonomous Car" course, an advanced program designed to delve into the realms of Computer Vision and Artificial Intelligence within the framework of the Robot Operating System (ROS). This course unit equips you with the foundational knowledge and skills necessary for understanding and working with Connected and Autonomous Vehicles (CAVs). You'll explore the core principles behind autonomous cars, delve into the Robot Operating System (ROS) - a critical software framework for robotics - and gain hands-on experience implementing functionalities for autonomous navigation.

Aims

- Introduce the concept of autonomous vehicles and their potential impact on transportation. •
- Equip you with a strong understanding of the Robot Operating System (ROS) for robotic development.
- Develop essential programming skills for building communication pathways within ROS networks.
- Explore key technologies for autonomous navigation such as Laser Scan Matching and Simultaneous Localization and Mapping (SLAM).
- Provide hands-on experience in implementing basic autonomous behaviors through real-world projects.

Learning Outcomes

- Upon successful completion of this course unit, you will be able to: •
 - Explain the fundamental concepts of autonomous vehicles and their significance in modern transportation. \bullet
 - Describe the core functionalities and applications of the Robot Operating System (ROS).
 - Navigate the ROS filesystem and manage software components effectively.
 - Utilize Publisher and Subscriber functionalities within the rospy API to facilitate communication in ROS networks.
 - Implement complex functionalities using Services and Launch files within the ROS framework.
 - Explain how rospy manages time synchronization and utilize Bag files for data recording and playback.
 - Apply Laser Scan Matching techniques to enhance odometry accuracy for autonomous navigation. •
 - Grasp advanced concepts and applications of Laser Scan Matching for robust odometry performance. ٠
 - Set up a robotic system for functioning and implement tele-operation for remote control. ۲
 - Design and implement a wall-following behavior using reactive methods in ROS. ٠
 - Master the concept of ROS Transformations and Frames for accurate coordinate handling within robotic systems. •
 - Explain the principles of Simultaneous Localization and Mapping (SLAM) and its role in autonomous navigation.
 - Implement a Pure Pursuit Controller for autonomous path following and engage in research projects related to Connected and Autonomous Vehicles.

Syllabus

Lectures

Labs

1.	Introduction to Autonomous Cars	•	Installing U
2.	Introduction to ROS	 Installing 	Installing P
3.	ROS Filesystem		
4.	rospy API Part-1: Publisher/Subscriber	•	Lab Hando
5.	rospy API Part-2 : Services and Launch	•	Lab Hando
6.	rospy API: Time + Bag files		Publishing/
7.	Laser Scan Matching for Odometry	•	Lab Hando
8.	Scan Matching - Part 2		
9.	Setup and Tele-Operation	•	Lab Hando
10.	Reactive Methods - Part 1: Wall Following	•	Lab Handou
11.	ROS Transformations and Frames		Lab Hando
12.	Simultaneous Localization and Mapping - SLAM	•	
13.	Follow the Gap	٠	Lab Hando
14.	Project: Pure Pursuit Controller and Research		

- Jbuntu Tutorial
- OS Tutorial
- ut 1: Understanding ROS using Turtlesim
- ut 2: ROS Filesystem, Packages, and /Subscribing
- ut 3: ROS Services and Launch
- out 4: ROS Simulator
- out 5: ROS Simulator Part 2
- out 6: ROS Transformations and Frames
- ut 7: Online Simulator

Detailed Course Outline

- Introduction to Autonomous Cars: Explore the fundamentals of autonomous vehicles, their significance in modern transportation, and the underlying technologies 1. driving their development.
- 2. Introduction to ROS: Gain a solid understanding of the Robot Operating System (ROS), a powerful middleware framework widely used in robotics research and development.
- ROS Filesystem: Learn about the ROS filesystem, its organization, and how it facilitates the management of software components in a robotic system. 3.
- rospy API Part-1: Publisher/Subscriber: Dive into the rospy API, focusing on the Publisher and Subscriber components for effective communication within a ROS network. 4.
- rospy API Part-2: Services and Launch: Extend your knowledge of the rospy API by exploring Services and Launch files, essential for implementing complex functionalities 5. in RÓS.
- rospy API: Time + Bag Files: Understand how rospy manages time and utilizes Bag files for recording and replaying data in ROS. 6.
- Laser Scan Matching for Odometry: Delve into the technique of Laser Scan Matching to enhance odometry, a critical aspect of autonomous navigation. 7.
- Scan Matching Part 2: Further explore advanced concepts and applications of Laser Scan Matching for improved accuracy in robotic odometry. 8.
- Setup and Tele-Operation: Learn the process of setting up a robotic system and implementing tele-operation for manual control. 9.
- Reactive Methods Part 1: Wall Following: Explore reactive methods in robotics, starting with the implementation of a wall-following behavior. 10.
- ROS Transformations and Frames: Master the concept of ROS Transformations and Frames, crucial for handling coordinate transformations in robotic systems. 11.
- 12. Simultaneous Localization and Mapping SLAM: Gain insights into Simultaneous Localization and Mapping, a key technology enabling robots to understand and navigate unknown environments.
- 13. Follow the Gap: Learn about the "Follow the Gap" algorithm, a navigation strategy that enables robots to follow open spaces.
- 14. Project: Pure Pursuit Controller and Research: Apply your acquired knowledge to develop a Pure Pursuit Controller and engage in research projects to deepen your understanding of autonomous car systems.

Requirements

Desired

Recommended

	Prerequisite Courses	ROS Programming
	• MT01 to MT08	Machine Learning
	Background Knowledge	
	 Familiarity with robotics concepts such as integrating microcontrollers with sensors and motors Understanding of programming concepts such as function calls, conditional statements, loops and recursion 	Basic Physics (New
	Prior Programming Skills	Calculus and linear
	 Intermediate Python (Preferably) Intermediate C++ 	Single variable caMatrix operations
	Software and Packages Required	Basic Statistics and
	 OS: Ubuntu/ Raspberry Pi OS Middleware: ROS Latest Python Release 	 Probability distrib Sampling, Mean,
	• Library: Open CV	Unix / Linux comm
	 Hardware Required Electronic Components: Microcontroller: Raspberry Pi Necessary Sensors and Motors Computing device with internet connectivity 	 File commands: Is Process managen SSH user@host, Installation:./ con Ports

ng	
g	
ewtonian Mechanics)	
ar algebra	
calculus and differential equations ons – transformations and rotations	
nd probability	
ribution n, variance	
mand line/ shell basics	
: ls, cd, pwd, mkdir, rm, cp, mv, touch, cdhmod, tar ement: ps, top, kill pid , grep, locate, echo onfigure, make, make install	

Thank you for learning with alpha bold

alphabold

Copyright © 2024 AlphaBOLD | All Rights Reserved

5/17/2024

